
Verified interoperability with exceptions
between OCaml and C
VALERAN MAYTIE, Université Paris-Saclay, Stagiaire, Laboratoire Méthodes Formelles, France

ARMAËL GUÉNEAU, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Internship supervisor, France

Additional Key Words and Phrases: foreign-function interfaces, exceptions, OCaml, C, program logics, multi-

language semantics, separation logic, Iris, Coq

1 INTRODUCTION
For several years, research in program logics has led to the development of tools for verifying

programs in various languages, typically focusing on one language at a time. For example, there is

Why3 [Bobot et al. 2015] for OCaml, Creusot [Denis et al. 2022] for Rust, and FramaC [Cuoq et al.

2012] for C. However, in practice, many software projects use several languages linked together

through a mechanism called Foreign Function Interface (FFI). This is particularly useful in higher-

level languages to access system libraries written in C/Assembly or various libraries written in C,

C++, or Rust, such as graphical libraries or numeric computing libraries.

Linking different languages can often be challenging because memory models can vary signifi-

cantly, and the use of a Garbage Collector (GC) can introduce additional complications. Therefore,

writing FFI code is subtle and requires a strong understanding of both languages involved. It is,

therefore, important to develop tools that enable us to reason about the interoperability between

languages.

In this work, we are particularly interested in the behavior of exceptions within the OCaml

FFI. Exceptions in a single language can make the control flow non-linear, so combining them

with the FFI is challenging. This is especially true because the OCaml FFI includes primitives for

making calls to OCaml code from C, which can interleave OCaml and C stack frames. As a result,

an exception can unwind multiple stack frames, potentially disrupting some GC roots. More details

on handling exceptions within the FFI are provided in Section 2.

To prove the correctness of complex programs, we aim to use formal methods, specifically

Melocoton [Guéneau et al. 2023], a recently published, state-of-the-art tool. Melocoton is a multi-

language program verification system designed for reasoning about OCaml, C, and their interactions

through the OCaml FFI. Melocoton first defines the multi-language semantics between OCaml and C,

which represents a substantial subset of the OCaml FFI. Additionally, Melocoton employs program

logics based on the Iris [Jung et al. 2018] separation logic [Reynolds 2002] framework, enabling

reasoning about multi-language systems. Important Melocoton concepts related to exceptions are

explained in Section 4. Formore details, JohannesHostert’smaster’s thesis provides a comprehensive

overview of the project [Hostert 2023].

The goal of this work is to extend Melocoton to handle exceptions, enabling reasoning about

OCaml-C programs that involve exceptions. This is a challenging task because Melocoton’s control

flow is currently completely linear. Moreover, for the sake of modularity, the modeled languages in

Authors’ addresses: Valeran Maytie, Université Paris-Saclay, Stagiaire, Laboratoire Méthodes Formelles, France, valeran.

maytie@universite-paris-saclay.fr; Armaël Guéneau, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Internship supervisor,

91190, Gif-sur-Yvette, France, armael.gueneau@inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-3072-4045
https://orcid.org/0000-0003-3072-4045
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

2 Valeran Maytie and A. Guéneau

Melocoton are designed to be independent of each other, which complicates control flow manipula-

tion.

This work contributed to improving Melocoton by adding exception handling to the OCaml

modeling language. This enhancement allowed for the modeling of communication between two

very different languages, including the transfer, triggering, and recovery of exceptions. It also

increased the expressive power of reasoning rules by incorporating exceptions into postconditions.

To achieve this, we extended Melocoton’s Coq code by adding definitions and proof code, as

documented in the following pull requests: 18, 20, 23, 25, and 27 (all of which have been merged)

and the "exception" branch. The code can be found at https://github.com/logsem/melocoton. We

also tested the modeling on a simple example in Coq.

These contributions can be summarized as follows:

• Adding exception handling toMelocoton’sML core language by introducing two expressions:

raise and try (Section 3).

• Propagate exception transfer between two languages with different value representations

by modifying intermediate languages for communicating values (Sections 5.1 and 5.2).

• Adding OCaml FFI primitives related to exceptions: caml_callback_exn and caml_raise,
including the definition of their semantics and reasoning rules (Section 5.3).

• Testing the modeling on examples (Section 6).

2 FFI WITH EXCEPTION
Before discussing Melocoton, we begin by introducing the OCaml-C Foreign Function Interface

(FFI), particularly focusing on the behavior of exceptions within this FFI. This section is based on

Chapter 22 of the OCaml manual [oca 2024, Chap. 22]. The OCaml-to-C FFI allows you to execute

C code within an OCaml program.

The first step in using the FFI is to declare a C function with the name ocaml_add_one in

the OCaml environment, represented by the name add_one and the type int -> int using the

following pattern:

external add_one : int -> int = "ocaml_add_one"

The function add_one can then be called as a regular OCaml function, with the parameters and

results adhering to the types specified in the declaration.

Now that the function has been declared, we need to define it in the C environment. This step is

more complex because the programmer must understand OCaml’s memory model and garbage

collector (GC).

To start, OCaml values are represented by the value type because, during the execution of an

OCaml program, the OCaml runtime is unaware of the specific types of values being manipulated.

OCaml uses a block-based memory model, meaning that from the runtime’s perspective, there are

two types of values: integers and addresses pointing to blocks. These blocks contain metadata for

the GC, such as block size and an array of values. The runtime distinguishes between integers and

pointers using the least significant bit, which is set to one for integers and to zero for addresses.

To manipulate these values in C, the FFI provides several primitives:

• Val_int: returns the OCaml value as a C integer.

• Int_val: returns the C integer as a OCaml value.

• Val_unit: returns a unit value.
• String_val: returns a array of char which represents an OCaml string.

https://github.com/logsem/melocoton

Verified interoperability with exceptions between OCaml and C 3

1 void caml_read_file(value fun , value v) {
2 CAMLparam2(fun , f);
3 char *fname = String_val(v);
4 FILE *file = fopen(fname , "r");
5 caml_result r;
6 char c;
7 while ((c = fgetc(file)) != EOF) {
8 r = caml_callback_exn(fun ,Val_int(c));
9 if (res.is_exception) {
10 fclose(file);
11 caml_raise(res.data);
12 }
13 }
14 fclose(file);
15 CAMLreturn(Val_unit);
16 }

file.c

external read_file :
(int -> unit) -> string -> unit =
"caml_read_file"

let iter c =
if c = 0
then failwith "c = EOF"
else Printf.printf "%c" (Char.chr c)

let () =
try read_file iter "text.txt"
with Failure v -> print_string v

file.ml

Fig. 1. Representative example illustrating the combination of exception and resource management

There are many more primitives described in the manual. However, using these primitives can

be unsafe because if the programmer provides an integer value instead of an address value, the

primitives might crash the program or corrupt memory (e.g., String_val(Val_unit)).
Since OCaml has a Garbage Collector (GC), values must be registered with the GC. Because the

GC can move blocks during execution, the addresses of these blocks can change. Therefore, the GC

must also update the addresses within the C function. To register a value with the GC, we can use

primitives like CAMLparm2, which registers two parameters with the GC. This aspect of the FFI is

complex and prone to bugs, but it is not our primary concern regarding exceptions.

The OCaml FFI contains two essential primitives for handling exceptions. The first primitive,

caml_raise, is used to throw anML exception in C code. It takes as a parameter a value representing

the exception. This primitive functions similarly to OCaml’s raise keyword. However, it is even
more subtle due to the FFI’s support for callbacks via the caml_callback primitive. This allows

for a stack with fully interleaved C and OCaml frames, where a raise can potentially unwind both

OCaml and C stack frames. Another important primitive is caml_callback_exn, which allows a

value to be applied to an ML closure while blocking all exceptions. This primitive takes two values

as parameters: the first represents the ML closure, and the second is the value applied to the closure.

Once execution is complete, the primitive returns a structure of type bool; value. The second
field contains an exception if the first field is true; otherwise, it contains the normal return value

1
.

2.1 Using exception in FFI by example
Tomake the FFI more concrete, we present an example in Figure 1, which is a simplified adaptation

of a pattern commonly found on GitHub. This example includes a C function, caml_read_file,
which takes as parameters a function that accepts an integer and returns unit, as well as a file name.

This function is declared in the OCaml file as read_file (lines 1-3). We pass a function, iter (line

5), which displays each character of the file being read one by one. If the character is an end-of-file

(EOF), we throw an exception.

The iter function, written in C, may take a closure that raises an exception, so care must be taken

when executing this closure. To begin, we must register the two parameters with the GC using the

1
This behavior is currently being implemented in the OCaml compiler (see: https://github.com/ocaml/ocaml/pull/13013)

https://github.com/ocaml/ocaml/pull/13013

4 Valeran Maytie and A. Guéneau

𝑣 ∈ Val F (𝑛 ∈ Z) | (𝑏 ∈ B) | ⟨⟩ | (ℓ ∈ Loc) | ⟨𝑣,𝑣⟩ | inl 𝑣 | inr 𝑣 | rec 𝑓 𝑥 . 𝑒 | 𝜄
𝑒 ∈ Expr F 𝑣 | 𝑥 | 𝑒 𝑒 | ⊖ 𝑒 | 𝑒 ⊗ 𝑒 | if 𝑒 then 𝑒 else 𝑒 |

⟨𝑒,𝑒⟩ | fst 𝑒 | snd 𝑒 | inl 𝑒 | inr 𝑒 | case 𝑒 𝑒 𝑒 |
alloc 𝑒 𝑒 | 𝑒.(𝑒) | 𝑒.(𝑒) ← 𝑒 | length 𝑒 | call fn ®𝑒

𝜎 ∈ State ≜ Loc
fin

⇀ list(Val) ⊎ {E}
E ∈ Ectx_itemF □ ⊗ 𝑣 | 𝑒 ⊗ □ | □.(𝑣) ← 𝑣 | 𝑒.(□) ← 𝑣 | 𝑒.(𝑒) ← □ | . . .

K ∈ Ectx F E ◦ . . . ◦ E

BetaS

(rec 𝑓 𝑥 . 𝑒 𝑣, 𝜎)↣ (𝑒{𝑓 ← rec 𝑓 𝑥 . 𝑒}{𝑥 ← 𝑣}, 𝜎)

AllocNS

𝑛 ≥ 0 ℓ ∉ dom 𝜎

(alloc𝑛 𝑣, 𝜎)↣ (ℓ, {ℓ ↦→ [𝑣, . . . , 𝑣︸ ︷︷ ︸
𝑛

];𝜎})

Prim_step

(𝑒′
1
, 𝜎1)↣ (𝑒′

2
, 𝜎2)

(K [𝑒′
1
], 𝜎1) →ML (K [𝑒′2], 𝜎2)

Store

{𝑙 ↦→
ML
®𝑣} 𝑙 .(𝑖) ← 𝑣 {⟨⟩. 𝑙 ↦→

ML
®𝑣 [𝑖 ≔ 𝑣]}ML

Alloc

{𝑛 ≥ 0} alloc𝑛 𝑣 {𝑙 . ∃ ®𝑣 . 𝑙 ↦→
ML
®𝑣 ∗ ®𝑣 = 𝑛 ∗ ∀𝑖 . ®𝑣 [𝑖] = 𝑣}ML

Fig. 2. Syntax, state, context, semantics and selected reasoning rules of 𝜆ML without exceptions

CAMLparam2 primitive. Afterward, we retrieve the file name and open the file. We then loop through

the file, processing each character by applying the function passed as a parameter. If the function

raises an exception, the file must be closed properly. For this, we use the caml_callback_exn
primitive, which allows us to catch the exception, close the file, and then re-raise the exception

normally.

This is a common pattern because, in the C world, resources are often not managed by the GC. If

a function raises an exception, this could lead to memory leaks. Therefore, we use this pattern to

ensure proper resource management in the C environment.

3 EXTENDING MELOCOTON’S ML CORE LANGUAGEWITH EXCEPTIONS
Melocoton defines two core languages, 𝜆MLand 𝜆C, which respectively model essential features of

OCaml and C. In this section, we describe how we extend 𝜆MLwith exceptions that are similar to

OCaml exceptions. Later, in Section 5, we will discuss how 𝜆MLexceptions interact with the FFI and

𝜆C. In Section 3.1, we present the syntax and semantics of the current form of 𝜆ML. Then, in Section

3.2, we introduce 𝜆ML+exn, an extension of 𝜆MLthat includes exceptions. Finally, in Section 3.3, we

explain the Hoare-style reasoning rules, or triples, of 𝜆ML+exn.

3.1 Syntax, semantics and program logic of Melocoton’s ML language
Figure 2 defines the syntax and some of the operational semantics rules for 𝜆ML.

To begin, 𝜆MLincludes basic functional values and expressions, such as integers and booleans,

with unary ⊖ and binary ⊗ operations. It also supports the unit value ⟨⟩ and pairs using the ⟨,⟩

Verified interoperability with exceptions between OCaml and C 5

constructor, along with destructors fst and snd. With these features, we can construct 𝑛-tuples as

follows: ⟨𝑒1, . . . , 𝑒𝑛⟩ ≜ ⟨𝑒1,⟨ . . . ,⟨𝑒𝑛,⟨⟩⟩⟩⟩. Additionally, there are also variant constructors inl, inr

with the destructor case. We can represent algebraic types such as the option types : None ≜ inl ⟨⟩
and Some 𝑒 ≜ inr 𝑒 . To represent functions, there are recursive closures rec 𝑓 𝑥 . 𝑒 . We use the

notation : 𝜆𝑥 .𝑒 ≜ rec _𝑥 . 𝑒 , let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥.𝑒1) 𝑒2 and 𝑒1; 𝑒2 ≜ let ⟨⟩ = 𝑒1 in 𝑒2.
Melocoton’s ML language also includes arrays and references. Memory is modeled as a map 𝜎

from locations ℓ to an array of arbitrary values. Both arrays and references are simply locations in

this memory map. The expression alloc𝑛 𝑣 allocates a block of 𝑛 consecutive heap cells initialized

with the value 𝑣 (a reference is a block of size 1). There is no explicit memory release expression,

as memory management is handled automatically by a garbage collector. It is possible to read

from memory using ℓ .(𝑛), write to memory with ℓ .(𝑛) ← 𝑣 , and obtain the size of a memory block

pointed to by a location with length ℓ .

There are three features of 𝜆MLto interact with other languages. First, the main FFI mechanism is

the external function call, modeled by the expression call fn ®𝑒 . This expression calls the function

fn of another language with the parameters ®𝑒 . We can also have values that come from another

language which are modeled using foreign values 𝜄 . These values can only be manipulated by

external calls. Finally, the E special heap contents represent locations temporarily owned by another

language. See [Guéneau et al. 2023] for more details.

The operational semantics of 𝜆MLis a small-step semantic. To define it, we use a reduction on

simple expressions (↣). This reduction takes an expression 𝑒 and a state 𝜎 and returns new ones.

For example, the rule BetaS apply a value 𝑣 to a closure rec 𝑓 𝑥 . 𝑒 , the state does not change, so 𝜎

is returned unchanged. The allocation rule modifies the state by adding a new list of values to the

location ℓ chosen non-deterministically. Then there is the main relation (→ML) which applies to

an entire program. This relation uses large evaluation context K which is a composition of small

evaluation contexts E with a single hole. There is an operation that fills the hole of the small context

with an expression 𝐸 [𝑒]. This relation contains only Prim_Step which applies a small reduction

inside a large expression and returns a new state.

One of Melocoton’s key idea is to verify the correctness of program in 𝜆ML (and now 𝜆ML+exn) code

that contains FFI calls. Unfortunately, making proofs using operational semantics alone is very

laborious, so to solve this problem Melocoton use resoning rules on the form of Hoare triple [Hoare

1969]. The logic inside triples is an extension of separation logic [Reynolds 2002] provided by the Iris

framework [Jung et al. 2018], this instantiation is called IrisML. Figure 2 shows a selection of IrisML.

A rule is a triple composed of an expression and two predicate: precondition and postcondition. The

precondition contains properties that need to be checked and resources which are consumed after

the expression is executed. The postcondition takes the form of a function which is applied to a

result, giving us new resources and properties. For example, the rule Store in Figure 4 take ℓ ↦→
ML
®𝑣

which is a resource that indicates that ℓ points to the array ®𝑣 . After the execution, the resource is
consumed and the expression returns the unit value ⟨⟩ and a new resource ℓ ↦→

ML
®𝑣 [𝑖 ≔ 𝑣], which

changes the element 𝑖 pointed by ℓ . The Alloc rule creates a resource, so we just need to prove that

the size 𝑛 is nonnegative. The rule provides a location ℓ which points to a list of values ℓ ↦→
ML
®𝑣 .

The postcondition gives some properties on the list such as its size is equal to 𝑛 and all the values

inside ®𝑣 are equal to 𝑣 .

3.2 Adding exceptions to 𝜆ML
Figure 3 describes 𝜆ML+exn, our extension of 𝜆MLwith exceptions. We model the behaviour of OCaml’s

exceptions in 𝜆ML+exn. We start by adding the expression raise 𝑒 and how to propagate them, then

we add the expression try 𝑒 𝑟 to be able to catch them.

6 Valeran Maytie and A. Guéneau

𝑒 ∈ Expr + = raise 𝑒 | try 𝑒 𝑒
E ∈ Ectx_item + = raise □ | try □ 𝑒

TryVS

(try 𝑣 𝑒, 𝜎)↣ (𝑣, 𝜎)

TryRS

(try raise 𝑣 𝑒, 𝜎)↣ (𝑒 𝑣 ;𝜎})

RaiseS

E ≠ try □ 𝑒

(K ◦ E[raise 𝑣], 𝜎) →ML (K [raise 𝑣];𝜎})

Fig. 3. Exception in 𝜆ML+exn

Raise

E ≠ try □ 𝑒 {𝑃} raise 𝑣 {𝜙}ML

{𝑃} E[raise 𝑣] {𝜙}ML

Try

∀𝑣 . {𝐸 𝑣} 𝑟 𝑣 {𝜙}ML

{𝑃} 𝑒 {OVal 𝑣 ⇒ 𝜙 𝑣 | OExn 𝑣 ⇒ 𝐸 𝑣}ML

{𝑃} try 𝑒 𝑟 {𝜙}ML

Fig. 4. New rules in IrisML+exn

First, we add an expression raise which cuts across all current expressions of the current 𝜆ML. To

reduce under the exception we add the context item raise □, because thanks to the rule Prim_step,

the square will eventually be reduced to a value. The reduction rule RaiseS allow exception to skip

a small context E. To prevent a raise 𝑣 passing though a try, we need to ensure that the context

item E is not a try □ 𝑒 . This rule is incorporated into the primary reduction (→ML) because the rule

encapsulates multiple reductions. RaiseS must be included within a large context K , enabling its
application to all expressions with raise 𝑣 .

Finally, we add the expression try 𝑒 𝑒 used to block exceptions and retrieve their values. The first

argument 𝑒 represents the main program, so we want to reduce into a value on an exception, so we

use the Prim_step rule again, by adding a context item try □ 𝑒 . Thanks to the rule TryVS, if the

expression is reduced to a value 𝑣 , then 𝑣 can pass though the try. Otherwise, the head reduction

rule TryRS catches a raise 𝑣 and applies the value 𝑣 to the exception handler 𝑒

We have adapted the method used in Didier Rémy’s course for large context semantics [Rémy

2015]. There are a few differences in the course, there is no notion of small context and there is

only one type of reduction. We therefore had to adapt the rules to make them compatible with the

existing ones.

3.3 Adapting of Melocoton hoar triples logic reasoning rules with exceptions
Now that the exceptions have been added to 𝜆ML, we can adapt IrisMLlogic to be able to reason about

the new expressions by extending IrisMLinto IrisML+exn, shown in Figure 4.

IrisML+exncontains two new rules Raise and Try. The rules are more complex, because exceptions

manipulate the execution flow, which is difficult to represent in triple form. The rule Raise, passes

a raise 𝑣 through a small context E. To do this, we must show that E is not a try □ 𝑟 , then we can

continue the proof without the small context E. The rule Try verifies the expression 𝑒 within a

try. After the verification, if 𝑒 create a value 𝑣 , then 𝜙 𝑣 holds, otherwise 𝑟 𝑣 must be verified. To

make this distinction, we introduce a new notation: OVal 𝑣 ⇒ 𝑉 | OExn 𝑣 ⇒ 𝐸. With this notation

Verified interoperability with exceptions between OCaml and C 7

IrisML IrisCIrisML+C

𝜆ML Semantics 𝜆C Semantics[𝜆𝑀𝐿]FFI Semantics

Fig. 5. Melocoton structure

the formula 𝑉 𝑣 holds if the expression returns a value 𝑣 . Otherwise, if the expression raise an

exception with a value 𝑣 , the formula 𝐸 𝑣 holds. To transfer the “logical result” of executing 𝑒 , we

use a formula 𝐸 and the value is transferred to the triple using a for-all. We must now check that

the result of 𝑟 𝑣 verifies the postcondition Φ.
Thanks to the Iris framework modularity, after instantiating IrisML, we obtain the adequacy of

IrisML(Theorem 3.1). This is important, because if we succeed to prove a triple, then adequacy tells

us that the program does not crash and the result verifies the postcondition, we say that the 𝑒 is

safe with respect to 𝜙). We prove that each rule is correct with respect operational semantic, by

adding the IrisML+exnrules, the theorem remains true without modification.

Theorem 3.1 (Adeqacy of IrisML). Let 𝑒 a 𝜆ML+exnexpression, 𝜎 a state and 𝜙 : Val → Prop

{True} 𝑒 {𝜙}ML ⇒ (∀𝑣, 𝜎 ′, (𝑒, 𝜎) →∗ML (𝑣, 𝜎 ′) ⇒ 𝜙 𝑣)

4 BACKGROUND: THE STRUCTURE OF MELOCOTON
Before making any change, it is important to understand certain parts of Melocoton unchanged,

such as the link between two language, and in particular how the control flow is modeled. As

shown in Figure 5, Melocoton is composed of a mechanism for linking two languages describe in

the first section, and a wrapper around 𝜆MLto link it with 𝜆Cdescribe in the second section. Finally,

we present the top block, which creates the program logic for this combination of languages.

4.1 Linking two abstract languages with the same value definition
In practice, when we compile a program using FFI, we go through a process called linking. Linking

combines binary files possibly produced from different languages together to create an executable.

Before linking two languages in Melocoton, we need to make a general definition of the notion

of language. A language is a structure that depends on a notion of value Val, but in must also

instantiate other definitions:

• Expressions Expr , with two functions:

– of_val : Val → Expr , transform a value into an expression (total function)

– to_val : Expr → Val + ⊥, transform an expression into a value (partial function)

• Context 𝐾 , with basic operations: composition ◦ and filling a context with an expression 𝐾 [𝑒]
(produces an expression)

• State, which doesn’t really interest us here

• Functions Fun, with two functions:

– of_call : Fun × ®Val → Expr , transform a function call into an expression

– is_call : Expr → (Fun× ®Val ×𝐾) +⊥, isolate a function call into a context (𝑒 = 𝐾 [fn ®𝑣])
– apply_call : Fun × ®Val → Expr + ⊥, applies the arguments to the function.

• (𝑒, 𝜎) →𝑝 (𝑒′, 𝜎 ′), symbolizing the operational semantics parameterized by a program 𝑝 ≜
fn ⇀ Fun

8 Valeran Maytie and A. Guéneau

𝐾

𝑒L 𝐾L [fn ®𝑣]
∗

𝐾L [𝑣]res
∗

fn ®𝑣, 𝐾 ◦ 𝐾L

𝑣

𝑒R

𝑣

.

.

.

𝑒R = apply_call fn ®𝑣
𝐾 ◦ 𝐾L

∗
. . . , 𝐾 ◦ 𝐾L ◦ 𝐾R

Fig. 6. Linking semantics, between two languages (pink and blue) symbolized by boxes of two different colors.

Black arrows represent internal steps of the linking language for communicating languages

Melocoton defines a linking operator: “− ⊕ −”, which takes two instantiated languages with

the same value definition as parameters, to create a new language noted: 𝜆L ⊕ 𝜆R. In 𝜆L ⊕ 𝜆R, 𝜆L
(resp. 𝜆R) can make external calls if the function is defined in the 𝜆R (resp. 𝜆L) program. To detect

whether a function call is external, linking semantics has a rule that determines whether execution

is blocked during a function call, and if so, linking hands over to the other language. The transition

from one language to another contains quite few steps in the operational semantics, illustrated in

Figure 6 (The memory state changes, but we won’t explain this part, because in has no influence

on the control flow). The semantics of linking save the state of the calling language in a context,

the semantics of linking can retrieve the context using the function is_call. Finally, the linker
transform the function call into an expression of the called language using the function apply_call.
Once the function call is complete, when the function to_val return a value 𝑣 . The linker retrieve

the context and replace the hole with the result 𝑣 , then the linking semantics continue execution.

We note, that only values can be transferred from one language to another, and the control flow is

totally linear.

4.2 Bridging the gap between two languages with different values (and state)
The gap between 𝜆MLand 𝜆C. The C language is modeled with 𝜆C. It has a completely different

definition of values than 𝜆MLpresented just below:

w ∈ Val ≔ (𝑛 ∈ Z) | (𝑎 ∈ Addr)

The 𝜆Cvalues, are either integers, or an address that points to a memory block that contains an

address. These values are completely different than those of 𝜆MLwhich are more structured. So

we can’t link directly these two languages using the linking language presented in the previous

section.

Bridging the gap. To bridge the gap between 𝜆Cand 𝜆MLlanguages, Melocoton introduces the

wrapping combinator “[−]FFI”. This combinator allows us to obtain a language 𝜆[ML]FFI and a

semantics→[ML]FFI described in Figure 7. This semantic allows you to execute 𝜆MLexpression with

the 𝜆MLsemantic→ML (purple block in the Figure 7), execute FFI primitives called from C code,

and translate 𝜆MLand 𝜆Cvalues. The semantics of the wrapper are special in that they are non-

deterministic, meaning that they point an expression to a set of possible executions. To bridge the

gap between the two languages, Melocoton need to be able to translate a 𝜆MLvalue into a 𝜆Cvalue.

To do this, the wrapper contains a relation:

Verified interoperability with exceptions between OCaml and C 9

𝑒 𝐾 [fn ®𝑣]∗
fn ®w, 𝐾

.

.

.

prim ®𝑤1

®𝑣 ≈ ®𝑤

.

.

.

𝑤2

𝑝𝑟𝑖𝑚 ∈ {Val_int, callback, . . .}

.

.

.

𝑤3, 𝐾 𝑣′ ≈ 𝑤3𝐾 [𝑣 ′]res
∗

Fig. 7. 𝜆[ML]FFI semantics presentation, the pink boxes contain the 𝜆MLwrapped code, encompassed by a blue

box representing the wrapper.

𝑣 ≈ w 𝑣 and w represent the same value in the 𝜆MLmemory model
2

Memory in the wrapper. The reader may have noticed that the relation: ≈ does not depend on

memory, but translating an address to an 𝜆MLvalue requires access to memory, we decided to ignore

it to simplify the explanations.

Wrapper semantics. In this language 𝜆MLexpression [𝑒]FFI can be execute thanks to the ruleWStep

(shown in Figure 7), in order to apply the rule, we need to prove that the expression is not blocked.

The execution of an expression can be blocked when it represents an external function call, we

transform this function call into an internal expression of 𝜆[ML]FFI that communicates the function

name, save context and arguments translated into value of 𝜆Cthanks to the ruleWCall shown in

Figure 8. Once the function call is complete, the RetS rule retrieves the result, which is translated

into an 𝜆MLvalue for insertion into the saved context.

FFI primitives. The FFI also provides primitives that allow 𝜆C expressions to communicate with

𝜆MLexpressions. To model them, Melocoton use the wrapper, which retrieves a function call with

arguments which the wrapper transform into a primitive call. Most primitives don’t execute

𝜆MLexpression and return a 𝜆Cvalue directly. Their semantics are modeled using a separate relation

⇝ that relates an expression (primitive call) to a 𝜆Cvalue set, this relation is used in the wrapper’s

global semantics in the rule WPrim. The only primitive that calls an 𝜆MLexpression has a semantics

directly modeled on the wrapper’s semantics→[ML]FFI is callback, which reduce the primitive call

to a 𝜆MLexpression in the rule WCallback. Once the execution of the function is complete, the

value must be returned to the linker using the WRet rule. So we now have a language 𝜆[ML]FFI ⊕ 𝜆C
and a semantics that model the execution of an OCaml and C program ho can communicate thanks

to the FFI.

4.3 Multi-language program logic
Communication between the two logics. Now that the semantics of 𝜆ML and 𝜆C can communicate,

Melocoton link IrisML and IrisC to have a new program logic called IrisML+C, which allows you to

prove multi-language specification between OCaml and C shown in Figure 5. To link the two logics,

we add specifications Ψ for external functions inside the triple. This specifications are executed

2
In this document we use ≈ as a simplification, because the details do not matter with exception In Melocoton/Coq, it

corresponds to a combination of the inductive is_val and repr_lval defines in the interop/basic.v file. But in triple,

this notation corresponds to the combination of repr_lval and to the different ↦→ IrisML+C resources.

10 Valeran Maytie and A. Guéneau

WStep

𝑒 ∉ Val ∃𝑒′, 𝑒 →ML 𝑒
′

𝑒 →[ML]FFI {𝑒′ | 𝑒′ ∈ Expr, 𝑒 →ML 𝑒
′}

WCall

𝐾 [call fn ®𝑣] →[ML]FFI {fn ®𝑤,𝐾 | ®𝑤 ∈ Val∗, ®𝑣 ≈∗ ®𝑤}

WVal

to_val 𝑒 = 𝑣

𝑒 →[ML]FFI {𝑤 | 𝑤 ∈ Val, 𝑣 ≈ 𝑤}

WRet

𝑣 ≈ 𝑤
𝑤,K →[ML]FFI {K [𝑣]}

WPrim

prim ®𝑤 ⇝ 𝑋

prim ®𝑤 →[ML]FFI 𝑋

WCallback

w ≈ rec 𝑓 𝑥 . 𝑒 w′ ≈ 𝑣
callback [w,w′] →[ML]FFI {(rec 𝑓 𝑥 . 𝑒) 𝑣}

Fig. 8. A subset of the wrapper semantics, without state

when a function is not in the program 𝑝 , thanks to the Call-external rule. Otherwise, the function

is retrieved from the 𝑝 program and executed with the Call-internal rule. The rules are detailed

just below; the program 𝑝 and protocols Ψ are ignored in the following, as we’re going to write

them as a triple to make them easier to write.

Call-internal

𝑝 (fn) = 𝑓 {𝑃} 𝑓 (®𝑣) @ 𝑝,Ψ {𝑣 .𝑄 𝑣}
{𝑃} call fn ®𝑣 @ 𝑝,Ψ {𝑣 .𝑄 𝑣}

Call-external

𝑝 ∉ dom(𝑝) 𝑃 −∗ Ψ fn ®𝑣 𝑄
{𝑃} call fn ®𝑣 @ 𝑝,Ψ {𝑣 .𝑄 𝑣}

Using FFI primitives in IrisML+C. When executing C code in the FFI, we can manipulate objects

from the 𝜆MLworld and execute FFI primitives, so there are specific features to IrisML+C. To illustrate

some of this logic, we’ll explain the ExecCallback rule shown below, which has been simplified

for the explanation
3
.

ExecCallback

{𝑃} (rec 𝑓 𝑥 . 𝑒) 𝑣 {𝑄}
{𝑤 ≈ rec 𝑓 𝑥 . 𝑒 ∗𝑤 ′ ≈ 𝑣 ∗ 𝑃} callback 𝑤 𝑤 ′{𝑟 . ∃𝑟 . 𝑟 ≈ 𝑟 ∗𝑄 (𝑟)}

To begin, the primitive callback takes two arguments 𝑤 and 𝑤 ′. The first must corresponds to

an 𝜆MLclosure, for which we use ≈ notation in the precondition, then the second argument can

correspond to any 𝜆MLvalue that is applied to the closure. Next, the rule execute the 𝜆MLexpression

(rec 𝑓 𝑥 . 𝑒) 𝑣 , to transmit precondition, we use the predicate 𝑃 , which is transformed into the post-

condition𝑄 once execution is complete. The primitive returns an expression 𝜆C𝑟 which correspond

to an expression 𝜆ML𝑟 which satisfies the 𝑄 postcondition.

The logic IrisML+Cis based on the semantics of 𝜆[ML]FFI ⊕ 𝜆C language, of in the end we have an

adequacy theorem similar to tho Theorem 3.1, for the multi-language logic.

5 ADDING EXCEPTIONS TO MELOCOTON
Now that we have covered the basics of Melocoton, we can start modifiynig it to add exceptions.

As mentioned in the intoduticon, this is not a trivial addition, espacially as Melocoton’s code base

is already very large and complex. Even adding small notions can be very complex, so weneed to

be methodical when implementing them in Melocoton. To start adding exception, we had to find a

way to pragate them through the linker, which required modifying about 1000 lines of Coq to set

3
We hide Iris resources that talk about memory and GC management, which makes the rules more complicated.

Verified interoperability with exceptions between OCaml and C 11

𝐾

𝑒L 𝐾L [fn ®𝑣]
∗

𝐾L [of_out 𝑜]res
∗

fn ®𝑣, 𝐾 ◦ 𝐾L

𝑜

𝑒R

𝑜

.

.

.

𝐾 ◦ 𝐾L

. . . , 𝐾 ◦ 𝐾L ◦ 𝐾R

Fig. 9. Linking semantics with outcome

up the system without yet adding the exceptions. Then we had to define the new primitves in the

wrapper and define reasoning rules for them, which makes about 1500 lines of Coq.

Before, we stat modifying the means of communication between languages we need to define

what can be sent to model the raising of an exception. To do this, we create the notion of generic

outcome parameterized by a value definition:

𝑜 ∈ Out (Val) ≔ 𝑣val with 𝑣 ∈ Val
| 𝑣exn with 𝑣 ∈ Val

We instantiate this definition, with the value of 𝜆ML: Out (Val), abstract outcome are noted like this:

𝑜ML. We do the same thing for the 𝜆Cvalues which gives: 𝑜C in Out (Val). Now, we adapt the linking
and wrapper languages to connect the outcome between 𝜆MLand 𝜆C. In the first subsection, we

present how we chose to adapt the linking language with the outcome. Next, we show how the

wrapper has been modified to handle outcomes. Finally, we add the two primitives: callback_exn

and raise to the wrapper.

5.1 Transferring exception between two linked languages
As we saw in Section 4.1, the linking lanugage only transmitted values at the end of a function.

Now we want to be able to propagate en exception in the other language. We have a notion of

generalized outcomes, we can integrate it into the language interface. The interface is always

parameterized by a value Val, which is used to instantiate an outcome within the language. New,

functions are needed to link outcomes and expression:

• of_out : Out (Val) → Expr , transform a outcome into an expression (total function)

• to_out : Expr → Out (Val) + ⊥, transform an expression into a value (partial function)

This new function defines both functions:

of_val(𝑣) ≜ of_out(𝑣val) to_val(𝑒) ≜
{
𝑣 if to_out(𝑒) = 𝑣val
⊥ otherwise

In our new version of linking, return values are transformed into outcomes, as shown in the

Figure 9. A function is completed when the function: to_out, returns the output outcome 𝑜 which

is passed to the other language and transformed into an expression 𝑒 thanks to the function of_out,
to fill the context.

Note that the of_out function is a total function, which creates a problem in relation to 𝜆C,

because it has no exception. To do this, we extend the language by 𝜆C+exn, by adding the raise 𝑤

expression, which represents the exception𝑤 propagating through a C program, cannot be caught

in C. This is an implementation choice, as we could have made the of_out function partial and,

when the function returns nothing, cut the context save in the internal state of the linking language

12 Valeran Maytie and A. Guéneau

𝑒 𝐾 [fn ®𝑣]∗
fn ®w, 𝐾

.

.

.

prim ®w
.
.
.

wval
.
.
.

𝑜C
′, 𝐾𝐾 [of_out 𝑜ML′]res

∗

Fig. 10. modified wrapper smantics, omitting memory changes for clarity

WVal→WOut

to_out 𝑒 = 𝑜ML

𝑒 →[ML]FFI {𝑤 | 𝑤 ∈ Out (Val), 𝑣 ≈𝑜 𝑤}

WRet

𝑜ML ≈𝑜 𝑜C
𝑜C,K →[ML]FFI {K [of_out 𝑜ML]}

WPrim

prim ®𝑤 ⇝ 𝑋

prim ®𝑤 →[ML]FFI 𝑋

Fig. 11. modified wrapper semantics, without state

to translate it into the other language, this is not the mots general implementation choice, since

a language theat doesn’t catch an exception won’t release its stack frame. Thanks to the chosen

implementation, the exception passes all expressions thanks to a similar rule in RaiseS (semantic

𝜆ML) add to 𝜆C+exn.

5.2 Repairing the wrapper for transferring exception
The linking language transmits outcomes, we need to adapt the wrapper. Figure 10 shows similar

modifications to the linker, including of_outcome, which propagates exceptions through the

wrapper. Then you also need to be able to, it must be possible to relate 𝑜ML and 𝑜C outcomes, to do

that we add the relation “≈𝑜 based on the relation “≈”:
OVal

𝑣 ≈ w

𝑣val ≈𝑜 wval

OExn

𝑣 ≈ w

𝑣exn ≈𝑜 wexn

To transfer outcomes, you need to modify three semantic rules, shown in the Figure 11. First

of all, theWVal rule is transformed into WOut, because an expression returns outcomes instead

of values. To determine whether an expression is terminated, the to_out function must return

an outcome 𝑜ML. This outcome is transformed into an outcome 𝑜C of 𝜆C+exnwhich is then retrieved

by the linker. Then, at the end of the execution of a 𝜆C+exnexpression, we transform the recovered

outcome into a 𝜆ML+exnoutcome, which is transformed into an expression using the of_out function
to fill the context. Finally, the WPrim rule doesn’t change visually, but the ⇝ relation returns

a set 𝑋 of 𝜆C+exnoutcomes instead of a set of 𝜆C+exnvalues. We had to modify all the ⇝ rules to

replace the values𝑤 by𝑤val. Figure 10 shows the new path taken by the wrapper semantics. And

finally, WRet can now be used to retrieve the boolean after execution of an external function. The

𝜆MLexpression created by the callback primitive must also contain a boolean set to false, so as not

to change its semantics.

Verified interoperability with exceptions between OCaml and C 13

WStep

𝑒 ∉ Val ∃𝑒′, 𝑒 →ML 𝑒
′

𝑒𝑏 →[ML]FFI {𝑒′𝑏 | 𝑒′ ∈ Expr, 𝑒 →ML 𝑒
′}

WCall

𝐾 [call fn ®𝑣]𝑏 →[ML]FFI {fn ®𝑤, (𝐾𝑏) | ®𝑤 ∈ Val∗, ®𝑣 ≈∗ ®𝑤}

WRet

𝑣 ≈ 𝑤
𝑤, (K𝑏) →[ML]FFI {K [𝑣]𝑏}

WCallback

w ≈ rec 𝑓 𝑥 . 𝑒 w′ ≈ 𝑣
callback [w,w′] →[ML]FFI {((rec 𝑓 𝑥 . 𝑒) 𝑣)false}

WOut

to_out 𝑒 = 𝑜ML

𝑒false →[ML]FFI {𝑜C | 𝑜C ∈ Out (Val), 𝑜ML ≈𝑜 𝑜C}

WOutC

to_out 𝑒 = 𝑜ML

𝑒true →[ML]FFI {𝑜C | 𝑜C ∈ Out (Val), 𝑜ML ≈𝑜 𝑜C}

RetCV

𝑤val, 𝜎 →[ML]FFI {𝑎val, {𝑎 ≔ 0;𝑎 + 1 ≔ 𝑤 ;𝜎} | 𝑎 ∈ Addr, {𝑎, 𝑎 + 1} ∩ dom 𝜎 = ∅}

RetCR

𝑤exn, 𝜎 →[ML]FFI {𝑎val, {𝑎 ≔ 1;𝑎 + 1 ≔ 𝑤 ;𝜎} | 𝑎 ∈ Addr, {𝑎, 𝑎 + 1} ∩ dom 𝜎 = ∅}

Fig. 12. new interop semantics rules, for rules that will write to the memory state 𝜎 of 𝜆C

⊕

. . . ◦ 𝐾𝑏

𝑒𝑏

𝑜C, 𝐾𝑏

𝐾 [of_out 𝑜ML]𝑏 𝑜 ′ML𝑏

𝑜 ′C
𝑏 = true

𝑜 ′C
𝑏 = false

𝑎val, {𝑎 ≔ 0;𝑎 + 1 ≔ 𝑣 ;𝜎}
𝑣val

𝑎val, {𝑎 ≔ 1;𝑎 + 1 ≔ 𝑣 ;𝜎}
𝑣exn

Fig. 13. catch exception on the wrapper

5.3 Modeling FFI exception primitives in the wrapper
This section discusses one of the larger contributions made in this paper, as it allows to model

exception primitives, but to do this, it was necessary to make modifications to manipulate the

control flow of the wrapper, which required doing very technical proofs in Melocoton.

Catching outcomes in the wrapper. Before creating the primitives, we need to extend the wrapper

to catch the outcomes and transform them into structure (detailed in section 2.1). To do this, we

add a boolean to the 𝜆MLexpressions 𝑒𝑏 to determine whether the outcome should be caught up. So

as not to lose this boolean, we also add it to the context 𝐾𝑏 which is passed to the linker to retrieve

it after an external call. In doing this, we need to adapt several rules detailed in Figure 12.The

WStep rule transmits the boolean at each step of the 𝜆MLsemantics. ThenWCall creates the context

14 Valeran Maytie and A. Guéneau

RaiseP

raise w ⇝ {wexn}

ExecRaise

{⊤} raise w {wexn. ⊤}

WCallbackExn

w ≈ rec 𝑓 𝑥 . 𝑒 w′ ≈ 𝑣
callback_exn [w,w′] →[ML]FFI {((rec 𝑓 𝑥 . 𝑒) 𝑣)true}

ExecCallbackExn

{𝑃} (rec 𝑓 𝑥 . 𝑒) 𝑣 {𝑄}
{𝑃 ∗𝑤 ≈ rec 𝑓 𝑥 . 𝑒 ∗𝑤 ′ ≈ 𝑣}

callback_exn 𝑤 𝑤 ′

{𝑎C . ∃𝑟 . 𝑎C ↦→∗C [𝑛; 𝑟] ∗ 𝑟 ≈ 𝑟 ∗ (𝑛 = 0⇒ 𝑄 (𝑟val)) ∗ (𝑛 = 1⇒ 𝑄 (𝑟exn))}

Fig. 14. adding callback_exn and raise in the wrapper semantics →[ML]FFI and IrisML+C. ExecCallback is

simplified.

with the boolean function call expression from 𝜆ML. Then, when a 𝜆MLexpression is terminated and

the boolean is false, we do the same as before withWOut. Otherwise, if the boolean is true, we

transform the outcome into a new wrapper expression 𝑜C (WOutC rule), which symbolizing a

caught-up outcome. Now that we’ve got a caught outcome, we can return an address that points to

a boolean and the next box to the value contained in the outcome. The RetCV and RetCR rules

distinguish whether the outcome is a value or an expression, allowing you to set the boolean to

true or false.

Implementing the two exception primitives. Now that everything is in place, we can model the

two primitives raise and callback_exn. We start with the simplest primitives: raise, it allows you

to throw an exception withe a value that passed as arguments. For semantic, we just add the rule

RaiseP, to the relation ⇝, the rule return a singleton containing an exception outcome wexn, with

the parameter of the primitives as its value. The ExecRaise logical rule is just as simple, as it

only returns an outcome exception like the RaiseP semantic rule. For the second callback_exn
primitive, we start by adding the PCallbakExn rule, which is the same as PCallback, except that

the boolean is set to true to catch the returned outcomes. Then, for the reasoning rule, we add

ExecCallbackExn which is practically the same as ExecCallback, except that the postcondition

takes as parameter a 𝜆Caddress pointing to an integer 𝑛 and the next address pointing to a value 𝑟 .

The resource ↦→∗C expresses that an address points to a memory bloc of 𝜆C. As seen earlier, the integer

𝑛 determines whether the return value 𝑟 represents an exception, so there are two implication that

depending on whether 𝑛 is equal to on (resp. zero) the 𝑄 (𝑟exn) (resp. 𝑄 (𝑟 val)) must be verified.

Proving the ExecCallvackExn rule is difficult, because it includes many complex notions of

Melocoton, such as writing in memory at an address chose non-deterministically, translation of

𝜆Cvalues into 𝜆MLvalues, and above all this primitive puts into action all the language of Melocoton.

Verified interoperability with exceptions between OCaml and C 15

6 CASE STUDIES
To test the modeling, we created a completely artificial example that utilizes all the additions to

Melocoton, allowing us to verify if the correctness proof is not hindered by overly weak rules. The

example code (found in theories/examples/raise.v) resembles the pattern shown in Section

2.1 but is simplified by removing the loop and file handling to make the proof more manageable.

This example has enabled us to test whether our model can check multilingual programs with

exceptions.

7 CONCLUSION FUTUREWORK
To conclude, we have successfully implemented and proven in Coq all the contributions presented

in this paper. We have divided the contributions into several Git branches, some of which have

already been integrated into Melocoton. These include PR 23: adding outcome without exceptions

in the linker, PR 25: refactoring the relation ≈ to prepare for adding outcomes in the wrapper, and

PR 27: adding outcomes in the wrapper.

There are still many tasks ahead, such as proving more complex examples to fully integrate the

addition of exceptions into Melocoton (merge branch exception). During his internship, Gurvan

added local variables and stack frames to Melocoton. We will need to find a way to combine our

work to create a version of Melocoton that includes stack control with exceptions.

Acknowledgments: I would like to thank Armaël for his excellent supervision and invaluable

advice throughout the internship.

REFERENCES
2024. The OCaml manual – Chapter 22: Interfacing C with OCaml. https://ocaml.org/manual/5.2/intfc.html

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. 2015. Let’s verify this with Why3.

International Journal on Software Tools for Technology Transfer 17 (2015), 709–727.
Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012. Frama-C: A

software analysis perspective. In International conference on software engineering and formal methods. Springer, 233–247.
Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: a foundry for the deductive verification of rust

programs. In International Conference on Formal Engineering Methods. Springer, 90–105.
Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A

Program Logic for Verified Interoperability Between OCaml and C. Proc. ACM Program. Lang. 7, OOPSLA2, Article 247
(oct 2023), 29 pages. https://doi.org/10.1145/3622823

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (oct 1969), 576–580. https:

//doi.org/10.1145/363235.363259

Johannes Hostert. 2023. Logical Foundations Of Language Interoperability Between OCaml And C. Ph. D. Dissertation. Saarland
University.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Didier Rémy. 2015. Type Systems for Programming Languages. (2015). https://gallium.inria.fr/~remy/mpri/cours-mpri.pdf

Course notes, available electronically.

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. (2002), 55–74. https://doi.org/10.1109/LICS.

2002.1029817

https://ocaml.org/manual/5.2/intfc.html
https://doi.org/10.1145/3622823
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1017/S0956796818000151
https://gallium.inria.fr/~remy/mpri/cours-mpri.pdf
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817

	1 Introduction
	2 FFI with exception
	2.1 Using exception in FFI by example

	3 Extending Melocoton's ML core language with exceptions
	3.1 Syntax, semantics and program logic of Melocoton's ML language
	3.2 Adding exceptions to ML
	3.3 Adapting of Melocoton hoar triples logic reasoning rules with exceptions

	4 Background: the structure of Melocoton
	4.1 Linking two abstract languages with the same value definition
	4.2 Bridging the gap between two languages with different values (and state)
	4.3 Multi-language program logic

	5 Adding exceptions to Melocoton
	5.1 Transferring exception between two linked languages
	5.2 Repairing the wrapper for transferring exception
	5.3 Modeling FFI exception primitives in the wrapper

	6 Case studies
	7 Conclusion Future work
	References

