
Melocoton
A Program Logic for Verified Interoperability Between OCaml and C

Armaël Guéneau, Johannes Hostert, Simon Spies,

Michael Sammler, Lars Birkedal, Derek Dreyer

OOPSLA 2023, Cascais

27 October, 2023

2

Multi-Language Programs Are Everywhere

Python
C
Fortran

C++
Rust
JavaScript

C
Bindings for:

Rust
Python
OCaml
Go
. . .

3

The Goal: Verifying Multi-Language Programs

How do we

verify functional correctness

of programs written in

different languages?

Multi-Language Functional Correctness

Existing work on Semantics and Logical Relations.
How do we prove functional correctness of

individual, potentially unsafe programs?

Semantic Sou
ndness fo

r Langua
ge Intero

perabilit
y

Daniel Pat
terson

Northeast
ern University

Boston, M
A, USA

dbp@dbpmail.net

Noble Mushtak

Northeast
ern University

Boston, M
A, USA

mushtak.n
@northeas

tern.edu

Andrew Wagner

Northeast
ern University

Boston, M
A, USA

ahwagne
r@ccs.neu.e

du

Amal Ahmed

Northeast
ern University

Boston, M
A, USA

amal@ccs.neu.e
du

Abstract

Programs are rarel
y implemented in a single la

nguage, an
d

thus quest
ions of typ

e soundne
ss should a

ddress not
only the

semantics of a
single lang

uage, but h
ow it interacts

with oth-

ers. Even
between type-safe

languages
, disparate

features

can frustrate interopera
bility, as i

nvariants
from one lan-

guage can
easily be violate

d in the other.
In their seminal

2007 paper
, Matthews an

d Findler p
roposed a

multi-langua
ge

constructi
on that augm

ents the interopera
ting languages

with a pair of b
oundaries

that allow
code from

one langua
ge

to be embedded in
the other.

While this te
chnique h

as been

widely applied, th
eir syntac

tic source-
level inter

operability

doesn’t refl
ect practic

al implementations,
where the

behavior

of interact
ion is only defi

ned after c
ompilation to a common

target, and
any safety must be ens

ured by target inva
riants

or inserted
target-leve

l “glue cod
e.”

In this pap
er, we pres

ent a nove
l framework for

the design

and verific
ation of sound l

anguage in
teroperabi

lity that fol-

lows an interopera
tion-after-

compilation strategy. L
anguage

designers
specify wh

at data can
be convert

ed betwee
n types

of the two
languages

via a conve
rtibility re

lation 𝜏𝐴 ∼ 𝜏𝐵
(“𝜏𝐴

is converti
ble to 𝜏𝐵”)

and specif
y target-le

vel glue co
de imple-

menting the
conversion

s. Then, by
giving a se

mantic model

of source-
language

types as s
ets of targ

et-languag
e terms,

they can establish not only the meaning of
the source

types,

but also so
undness o

f conversi
ons: i.e., w

henever 𝜏𝐴
∼ 𝜏𝐵, the

correspon
ding pair o

f conversio
ns (glue co

de) conver
t target

terms that beh
ave like 𝜏𝐴

to target term
s that beh

ave like

𝜏𝐵, and v
ice versa.

With this, they
can prove sem

antic type

soundness
for the ent

ire system
.We illustrate

our framework

Permission to make digita
l or hard copies of

all or part
of this wo

rk for

personal o
r classroo

m use is granted
without fe

e provided
that copie

s

are not m
ade or dis

tributed for profit
or commercial adv

antage an
d that

copies bea
r this noti

ce and the full ci
tation on the first p

age. Copy
rights

for components o
f this wor

k owned by others tha
n the author(s)

must

be honore
d. Abstrac

ting with credit is p
ermitted. To copy otherwise

, or

republish,
to post on

servers or
to redistrib

ute to lists
, requires p

rior specifi
c

permission and/or a f
ee. Reques

t permissions fro
m permissions@acm.org.

PLDI ’22,
June 13–

17, 2022,
San Diego, CA

, USA

© 2022 Copy
right held

by the owner
/author(s)

. Publicati
on rights lice

nsed

to ACM.

ACM ISBN 978-1-4503
-9265-5/22

/06. . . $15.0
0

https://d
oi.org/10

.1145/351
9939.352

3703

via a serie
s of case s

tudies that
demonstrate h

ow our seman-

tic interop
eration-aft

er-compilation ap
proach allo

ws us both

to account fo
r complex difference

s in language
semantics

and make efficiency trade-offs
based on particular

ities of

compilers or ta
rgets.

CCS Con
cepts: • So

ftware and its engin
eering→ Gen-

eral prog
ramming language

s.

Keyword
s: languag

e interopera
bility, typ

e soundness
, se-

mantics, log
ical relatio

ns

ACM Referenc
e Format:

Daniel Pa
tterson, N

oble Mushtak, A
ndrew Wagner, and

Amal

Ahmed. 2022. S
emantic Soun

dness for
Language

Interopera
bility.

In Proceedin
gs of the

43rd ACM
SIGPLAN

Internati
onal Con

ference

on Programming Lang
uage Des

ign and Implementation
(PLDI ’22

),

June 13–
17, 2022,

San Diego, CA
, USA. AC

M, New York, NY,
USA,

16 pages. h
ttps://do

i.org/10.1
145/3519

939.3523
703

1 Introduc
tion

All practic
al languag

e implementations c
ome with som

e way

of interop
erating wi

th code writt
en in a different

language,

usually via a forei
gn-functio

n interface (
FFI). This

enables

development of soft
ware syste

ms with components w
ritten

in different la
nguages, w

hether to s
upport leg

acy librari
es or

different p
rogramming paradi

gms. For inst
ance, you

might

have a sys
tem with a high-per

formance data
layer writ

ten

in Rust inter
operating

with business l
ogic implemented in

OCaml. Sometimes, this int
eroperabil

ity is realiz
ed by targe

t-

ing a common platform (e.g., Scala
[40] and C

lojure [23]
for

the JVM, or SML [10] and
F# [48] for

.NET). Oth
er times, it is

supported
by librarie

s that inser
t boilerpla

te or “glue
code” to

mediate betw
een the tw

o language
s (such as t

he binding
gen-

erator SW
IG [7], C->Ha

skell [16],
OCaml-ctypes [5

4], NLFFI

[13], Rust
’s bindgen

[55], etc).
While intero

perability
can

be achieve
d in other way

s—via the
network, i

nter-proce
ss

communication,
or dispatc

hing between interprete
rs and

compiled code—we
focus in this paper

on the case when

both languages
are compiled to a shared intermediate or

target lang
uage.

In 2007, Matthews a
nd Findler [3

3] observe
d that while

there were numerous FFIs
that supp

orted interopera
tion

609

27

DimSum: A Decentralized Approach to Multi-language

Semantics and Verification
MICHAEL SAMMLER,MPI-SWS, Germany

SIMON SPIES,MPI-SWS, Germany
YOUNGJU SONG,MPI-SWS, Germany
EMANUELE D’OSUALDO,MPI-SWS, Germany

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

DEEPAK GARG,MPI-SWS, Germany
DEREK DREYER,MPI-SWS, Germany
Prior work onmulti-language program verification has achieved impressive results, including the compositional

verification of complex compilers. But the existing approaches to this problem impose a variety of restrictions

on the overall structure of multi-language programs (e.g., fixing the source language, fixing the set of involved

languages, fixing the memory model, or fixing the semantics of interoperation). In this paper, we explore the

problem of how to avoid such global restrictions.

Concretely, we present DimSum: a new, decentralized approach to multi-language semantics and verifica-

tion, which we have implemented in the Coq proof assistant. Decentralization means that we can define and

reason about languages independently from each other (as independent modules communicating via events),

but also combine and translate between them when necessary (via a library of combinators).

We apply DimSum to a high-level imperative language Rec (with an abstract memory model and function

calls), a low-level assembly language Asm (with a concrete memory model, arbitrary jumps, and syscalls),

and a mathematical specification language Spec. We evaluate DimSum on two case studies: an Asm library

extending Rec with support for pointer comparison, and a coroutine library for Rec written in Asm. In both

cases, we show how DimSum allows the Asm libraries to be abstracted to Rec-level specifications, despite the

behavior of the Asm libraries not being syntactically expressible in Rec itself. We also verify an optimizing

multi-pass compiler from Rec to Asm, showing that it is compatible with these Asm libraries.

CCS Concepts: • Theory of computation→ Logic and verification; Operational semantics.

Additional Key Words and Phrases: multi-language semantics, verification, compilers, non-determinism,

separation logic, Iris, CoqACM Reference Format:Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, andDerek

Dreyer. 2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM

Program. Lang. 7, POPL, Article 27 (January 2023), 39 pages. https://doi.org/10.1145/3571220

Authors’ addresses: Michael Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org; Simon

Spies, MPI-SWS, Saarland Informatics Campus, Germany, spies@mpi-sws.org; Youngju Song,MPI-SWS, Saarland Informatics

Campus, Germany, youngju@mpi-sws.org; Emanuele D’Osualdo, MPI-SWS, Saarland Informatics Campus, Germany,

dosualdo@mpi-sws.org; Robbert Krebbers, Radboud University Nijmegen, The Netherlands, mail@robbertkrebbers.nl;

Deepak Garg, MPI-SWS, Saarland Informatics Campus, Germany, dg@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland

Informatics Campus, Germany, dreyer@mpi-sws.org.Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART27https://doi.org/10.1145/3571220

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 27. Publication date: January 2023.

FunTAL: Reasonably Mixing a Functional Language

with Assembly∗

Daniel Patterson

Northeastern University, USA

dbp@cc
s.neu.ed

u

Jamie Perconti

Northeastern University, USA

jamieperco
nti@gm

ail.com

Christos Dimoulas

Harvard University, USA

chrdimo@seas.
harvard

.edu

Amal Ahmed

Northeastern University, USA

amal@ccs.
neu.edu

Abstract

We present FunTAL, the first multi-language system to

formalize safe interoperability between a high-level func-

tional language and low-level assembly code while sup-

porting compositional reasoning about the mix. A central

challenge in developing such a multi-language is bridging

the gap between assembly, which is staged into jumps to

continuations, and high-level code, where subterms return a

result. We present a compositional stack-based typed assem-

bly language that supports components, comprised of one

or more basic blocks, that may be embedded in high-level

contexts. We also present a logical relation for FunTAL that

supports reasoning about equivalence of high-level com-

ponents and their assembly replacements, mixed-language

programs with callbacks between languages, and assembly

components comprised of different numbers of basic blocks.

CCS Concepts •Theory of computation → Semantics

and reasoning; •Software and its engineering → For-

mal language definitions

Keywords multi-language semantics, typed assembly lan-

guage, inline assembly, contextual equivalence, logical rela-

tions

∗ We use blue sans-serif to typeset our functional language F and red

roman to typeset our typed assembly language T. This paper will be much

easier to follow if read/printed in color.

1. Introduction

Developers frequently integrate code written in lower-level

languages into their high-level-language programs. For in-

stance, OCaml and Haskell developers may leverage the FFI

to make use of libraries implemented in C, while Rust devel-

opers may include inline assembly directly. In each of these

cases, developers resort to the lower-level language so they

can use features unavailable in the high-level language to

gain access to hardware or fine-tune performance.

However, the benefits of mixed-language programs come

at a price. To reason about the behavior of a high-level

component, developers need to think not only about the se-

mantics of the high-level language, but also about the way

their high-level code was compiled and all interactions with

low-level code. Since low-level code usually comes without

safety guarantees, invalid instructions could crash the pro-

gram. More insidiously, low-level code can potentially alter

control flow, mutate values that should be inaccessible, or in-

troduce security vulnerabilities that would not be possible in

the high-level language. Unfortunately, there are no mixed-

language systems that enable non-expert programmers to

reason about interactions with lower-level code—i.e., sys-

tems that guarantee safe interoperability and provide rules

for compositional reasoning in a mixed-language setting.

Even if developers don’t directly write inline assembly,

mixed-language programs are a reality that compiler writ-

ers and compiler-verification efforts must contend with. For

instance, mixed programs show up in modern just-in-time

(JIT) compilers, where the high-level language is initially

interpreted until the runtime can identify portions to stati-

cally compile, at which point those portions of the code are

replaced with equivalent assembly. These assembly compo-

nents will include hooks to move back into the interpreted

runtime, corresponding closely to the semantics of a mixed-

language program. Verifying correctness of such JITs re-

quires proving that the high-level fragment and its compiled
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain

ACM. 978-1-4503-4988-8/17/06...$15.00

http://dx.doi.org/10.1145/3062341.3062347

495

Verifying an Open Compiler
Using Multi-language SemanticsJames T. Perconti and Amal AhmedNortheastern University

Abstract. Existing verified compilers are proved correct under a closed-world as-

sumption, i.e., that the compiler will only be used to compile whole programs. We

present a new methodology for verifying correct compilation of program compo-

nents, while formally allowing linking with target code of arbitrary provenance. To

demonstrate our methodology, we present a two-pass type-preserving open com-

piler and prove that compilation preserves semantics. The central novelty of our

approach is that we define a combined language that embeds the source, interme-

diate, and target languages and formalizes a semantics of interoperability between

them, using boundaries in the style of Matthews and Findler. Compiler correctness

is stated as contextual equivalence in the combined language.

Note to reader: We use blue, red, and purple to typeset terms in various lan-

guages. This paper will be difficult to follow unless read/printed in color.

1 Introduction
There has been remarkable progress on formally verified compilers over the last few

years, with researchers proving the correctness of increasingly sophisticated compilers

for increasingly realistic languages. The most well known instance of this is the Comp-

Cert compiler [1,2] which uses the Coq proof assistant to both implement and verify

a multi-pass optimizing compiler from C to PowerPC, ARM, and x86 assembly, prov-

ing that the compiler preserves semantics of source programs. Several other compiler-

verification efforts have successfully followed CompCert’s lead and basic methodology,

for instance, focusing on multithreaded Java [3], just-in-time compilation [4], and C

with relaxed memory concurrency [5].
Unfortunately, these projects prove compiler correctness under a closed-world

assumption, that is, assuming that the verified compiler will always compile whole

programs. Despite the immense effort put into verification, the compiler correctness

theorem provides no guarantees about correct compilation of components. This whole-

program assumption is completely unrealistic since most software systems today are

comprised of many components written in different languages compiled to a common

target, as well as runtime-library routines that may be handwritten in the target lan-

guage. We need compiler correctness theorems applicable to the way we actually use

these compilers.Formally verifying that components are compiled correctly—often referred to as

compositional compiler correctness—is a challenging problem. A key difficulty is that,

in the setting of compiling components, it is not clear how to even state the compiler cor-

rectness theorem. CompCert’s compiler correctness theorem is easy to state thanks to

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 128–148, 2014.

c© Springer-Verlag Berlin Heidelberg 2014

Operational Semantics for Multi-Language Programs

Jacob Matthews Robert Bruce Findler

University of Chicago

{jacobm, robby}@cs.uchicago.e
du

Abstract

Inter-language interoperability is big business, as the success of Mi-

crosoft’s .NET and COM and Sun’s JVM show. Programming lan-

guage designers are designing programming languages that reflect

that fact — SML#, Mondrian, and Scala, to name just a few ex-

amples, all treat interoperability with other languages as a central

design feature. Still, current multi-language research tends not to

focus on the semantics of interoperation features, but only on how

to implement them efficiently. In this paper, we take first steps to-

ward higher-level models of interoperating systems. Our technique

abstracts away the low-level details of interoperability like garbage

collection and representation coherence, and lets us focus on se-

mantic properties like type-safety and observable equivalence.

Beyond giving simple expressive models that are natural com-

positions of single-language models, our studies have uncovered

several interesting facts about interoperability. For example, higher-

order contracts naturally emerge as the glue to ensure that inter-

operating languages respect each other’s type systems. While we

present our results in an abstract setting, they shed light on real

multi-language systems and tools such as the JNI, SWIG, and

Haskell’s stable pointers.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory—Semantics

General Terms Languages, theory

Keywords Interoperability, multi-language systems, operational

semantics

1. Introduction

A modern large-scale software system is likely written in a vari-

ety of languages: its core might be written in Java, while it has

specialized system interaction routines written in C and a web-

based user interface written in PHP. And even academic languages

have caught multi-language programming fever, perhaps due to

temptingly large numbers of pre-existing libraries written in other

languages. This has prompted language implementors to target

COM [18,41], Java Virtual Machine bytecode [7,27,34], and most

recently Microsoft’s Common Language Runtime [8, 32, 36]. Fur-

thermore, where foreign function interfaces have historically been

used in practice to allow high-level safe languages to call libraries

written in low-level unsafe languages like C (as was the motivation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.

Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

for the popular wrapper generator SWIG [5]), these new foreign

function interfaces are built to allow high-level, safe languages to

interoperate with other high-level, safe languages, such as Python

with Scheme [33] and Lua with OCaml [39].

Since these embeddings are driven by practical concerns, the

research that accompanies them rightly focuses on the bits and

bytes of interoperability — how to represent data in memory, how

to call a foreign function efficiently, and so on. But an important

theoretical problem arises, independent of these implementation-

level concerns: how can we reason formally about multi-language

programs? This is a particularly important question for systems

that involve typed languages, because we have to show that the

embeddings respect their constituents’ type systems.

In this paper we present a simple method for giving operational

semantics to multi-language systems. Our models are rich enough

to support a wide variety of multi-language embedding strategies,

and powerful enough that we have been able to use them for

type soundness and contextual equivalence proofs. Our technique

is based on simple constructs we call boundaries, cross-language

casts that regulate both control flow and value conversion between

languages. We introduce boundaries through series of operational

semantics in which we combine a simple ML-like language with a

simple Scheme-like language.

In section 2, we introduce those two constituent languages for-

mally and connect them using a primitive embedding where values

in one language are opaque to the other. In section 3, we enrich

that embedding so that boundaries use type information to convert

one language’s values into their counterparts in the other, and we

show that this embedding naturally leads to higher-order contracts.

Section 4 shows a surprising relationship between the expressive

power of these two embeddings, and section 5 shows how the sys-

tem scales beyond purely type-directed conversion.

2. The lump embedding

To begin, we pick two languages, give them formal models, and

then tie those formal models together. In the interest of focusing

on interoperation rather than the special features of particular lan-

guages, we have chosen two simple calculi: an extended model

of the untyped call-by-value lambda calculus, which we use as a

stand-in for Scheme, and an extended model of the simply-typed

lambda calculus, which we use as a stand-in for ML (though it more

closely resembles Plotkin’s PCF without fixpoint operators [37]).

Figure 1 presents these languages in an abstract manner that we in-

stantiate multiple ways to model different forms of interoperability.

One goal of this section is to explain that figure’s peculiarities, but

for now notice that aside from unusual subscripts and font choices,

the two language models look pretty much as they would in a nor-

mal Felleisen-and-Hieb-style presentation [15].

To make the preparation more concrete, as we explain our pre-

sentation of the core models we also simultaneously develop our

first interoperation model, which we call the lump embedding.

In the lump embedding, ML values can appear in Scheme and

3

CompCertO: Compiling Certified Open C
ComponentsJérémie KoenigYale UniversityNew Haven, CT, USAjeremie.koenig@yale.edu Zhong ShaoYale UniversityNew Haven, CT, USAzhong.shao@yale.edu

Abstract
Since the introduction of CompCert, researchers have been

refining its language semantics and correctness theorem, and

used them as components in software verification efforts.

Meanwhile, artifacts ranging from CPU designs to network

protocols have been successfully verified, and there is in-

terest in making them interoperable to tackle end-to-end

verification at an even larger scale.
Recent work shows that a synthesis of game semantics,

refinement-based methods, and abstraction layers has the po-

tential to serve as a common theory of certified components.

Integrating certified compilers to such a theory is a critical

goal. However, none of the existing variants of CompCert

meets the requirements we have identified for this task.

CompCertO extends the correctness theorem of CompCert

to characterize compiled program components directly in

terms of their interaction with each other. Through a careful

and compositional treatment of calling conventions, this is

achieved with minimal effort.CCS Concepts: · Software and its engineering → Soft-

ware verification;Compilers; ·Theory of computation

→ Program verification.Keywords: Compositional Compiler Correctness, Game Se-

mantics, Simulation Convention, Language Interface

ACM Reference Format:Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling

Certified Open C Components. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design

and Implementation (PLDI ’21), June 20ś25, 2021, Virtual, Canada.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3453483.

3454097

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454097

1 IntroductionOver the past decade, researchers have been able to formally

verify various key components of computer systems, includ-

ing compilers [15, 16, 25], operating system kernels [6, 7, 11],

file systems [4] and processor designs [3, 5]. Building on

these successes, the research community is attempting to

construct large-scale, heterogeneous certified systems by

using formal specifications as interfaces between the correct-

ness proofs of various components [2]. The ongoing design of

suitable semantic frameworks is an important step towards

this goal. However, incorporating certified compilers into

frameworks of this kind presents a number of difficulties.
1.1 Compositional Compiler Correctness

Compiler correctness is often formulated as a semantics

preservation property, asserting that the semantics of the

compiled program C(𝑝) are related in some particular way

to the semantics of the source program 𝑝:J𝑝KS ∼ JC(𝑝)KT .
(1)

For whole-program compilers, semantics preservation is

straightforward enough. In CompCert, the semantics of the

source and target programs are given as labeled transition

systems, and the relation ∼ is a simulation property.

However, practical applications involve program compo-

nents which we want to compile and verify separately from

each other. In principle, the use of a compositional seman-

tics enables the formulation of (1) at the level of individual

components. Unfortunately, traditional approaches to com-

positional semantics fare poorly in the presence of advanced

language features, or of the kind of abstraction involved in

the compilation process. For CompCert, early attempts along

these lines have proven challenging [21, 23].

As a result, commonwisdom holds semantics preservation

to be a lost cause for compositional compiler correctness [20].

Instead, research has focused on compositional reasoning

methods based on contextual refinement, side-stepping the

need for compositional semantics preservation [10, 22].
1.2 Decomposing Heterogeneous Systems

Unfortunately, these methods share an intrinsic limitation:

they presuppose the existence of a completed system to be

proven correct, and compositionality only operates within its1095

Multi-Language Functional Correctness
Existing work on Semantics and Logical Relations.

How do we prove functional correctness of
individual, potentially unsafe programs?

Semantic Sou
ndness fo

r Langua
ge Intero

perabilit
y

Daniel Pat
terson

Northeast
ern University

Boston, M
A, USA

dbp@dbpmail.net

Noble Mushtak

Northeast
ern University

Boston, M
A, USA

mushtak.n
@northeas

tern.edu

Andrew Wagner

Northeast
ern University

Boston, M
A, USA

ahwagne
r@ccs.neu.e

du

Amal Ahmed

Northeast
ern University

Boston, M
A, USA

amal@ccs.neu.e
du

Abstract

Programs are rarel
y implemented in a single la

nguage, an
d

thus quest
ions of typ

e soundne
ss should a

ddress not
only the

semantics of a
single lang

uage, but h
ow it interacts

with oth-

ers. Even
between type-safe

languages
, disparate

features

can frustrate interopera
bility, as i

nvariants
from one lan-

guage can
easily be violate

d in the other.
In their seminal

2007 paper
, Matthews an

d Findler p
roposed a

multi-langua
ge

constructi
on that augm

ents the interopera
ting languages

with a pair of b
oundaries

that allow
code from

one langua
ge

to be embedded in
the other.

While this te
chnique h

as been

widely applied, th
eir syntac

tic source-
level inter

operability

doesn’t refl
ect practic

al implementations,
where the

behavior

of interact
ion is only defi

ned after c
ompilation to a common

target, and
any safety must be ens

ured by target inva
riants

or inserted
target-leve

l “glue cod
e.”

In this pap
er, we pres

ent a nove
l framework for

the design

and verific
ation of sound l

anguage in
teroperabi

lity that fol-

lows an interopera
tion-after-

compilation strategy. L
anguage

designers
specify wh

at data can
be convert

ed betwee
n types

of the two
languages

via a conve
rtibility re

lation 𝜏𝐴 ∼ 𝜏𝐵
(“𝜏𝐴

is converti
ble to 𝜏𝐵”)

and specif
y target-le

vel glue co
de imple-

menting the
conversion

s. Then, by
giving a se

mantic model

of source-
language

types as s
ets of targ

et-languag
e terms,

they can establish not only the meaning of
the source

types,

but also so
undness o

f conversi
ons: i.e., w

henever 𝜏𝐴
∼ 𝜏𝐵, the

correspon
ding pair o

f conversio
ns (glue co

de) conver
t target

terms that beh
ave like 𝜏𝐴

to target term
s that beh

ave like

𝜏𝐵, and v
ice versa.

With this, they
can prove sem

antic type

soundness
for the ent

ire system
.We illustrate

our framework

Permission to make digita
l or hard copies of

all or part
of this wo

rk for

personal o
r classroo

m use is granted
without fe

e provided
that copie

s

are not m
ade or dis

tributed for profit
or commercial adv

antage an
d that

copies bea
r this noti

ce and the full ci
tation on the first p

age. Copy
rights

for components o
f this wor

k owned by others tha
n the author(s)

must

be honore
d. Abstrac

ting with credit is p
ermitted. To copy otherwise

, or

republish,
to post on

servers or
to redistrib

ute to lists
, requires p

rior specifi
c

permission and/or a f
ee. Reques

t permissions fro
m permissions@acm.org.

PLDI ’22,
June 13–

17, 2022,
San Diego, CA

, USA

© 2022 Copy
right held

by the owner
/author(s)

. Publicati
on rights lice

nsed

to ACM.

ACM ISBN 978-1-4503
-9265-5/22

/06. . . $15.0
0

https://d
oi.org/10

.1145/351
9939.352

3703

via a serie
s of case s

tudies that
demonstrate h

ow our seman-

tic interop
eration-aft

er-compilation ap
proach allo

ws us both

to account fo
r complex difference

s in language
semantics

and make efficiency trade-offs
based on particular

ities of

compilers or ta
rgets.

CCS Con
cepts: • So

ftware and its engin
eering→ Gen-

eral prog
ramming language

s.

Keyword
s: languag

e interopera
bility, typ

e soundness
, se-

mantics, log
ical relatio

ns

ACM Referenc
e Format:

Daniel Pa
tterson, N

oble Mushtak, A
ndrew Wagner, and

Amal

Ahmed. 2022. S
emantic Soun

dness for
Language

Interopera
bility.

In Proceedin
gs of the

43rd ACM
SIGPLAN

Internati
onal Con

ference

on Programming Lang
uage Des

ign and Implementation
(PLDI ’22

),

June 13–
17, 2022,

San Diego, CA
, USA. AC

M, New York, NY,
USA,

16 pages. h
ttps://do

i.org/10.1
145/3519

939.3523
703

1 Introduc
tion

All practic
al languag

e implementations c
ome with som

e way

of interop
erating wi

th code writt
en in a different

language,

usually via a forei
gn-functio

n interface (
FFI). This

enables

development of soft
ware syste

ms with components w
ritten

in different la
nguages, w

hether to s
upport leg

acy librari
es or

different p
rogramming paradi

gms. For inst
ance, you

might

have a sys
tem with a high-per

formance data
layer writ

ten

in Rust inter
operating

with business l
ogic implemented in

OCaml. Sometimes, this int
eroperabil

ity is realiz
ed by targe

t-

ing a common platform (e.g., Scala
[40] and C

lojure [23]
for

the JVM, or SML [10] and
F# [48] for

.NET). Oth
er times, it is

supported
by librarie

s that inser
t boilerpla

te or “glue
code” to

mediate betw
een the tw

o language
s (such as t

he binding
gen-

erator SW
IG [7], C->Ha

skell [16],
OCaml-ctypes [5

4], NLFFI

[13], Rust
’s bindgen

[55], etc).
While intero

perability
can

be achieve
d in other way

s—via the
network, i

nter-proce
ss

communication,
or dispatc

hing between interprete
rs and

compiled code—we
focus in this paper

on the case when

both languages
are compiled to a shared intermediate or

target lang
uage.

In 2007, Matthews a
nd Findler [3

3] observe
d that while

there were numerous FFIs
that supp

orted interopera
tion

609

27

DimSum: A Decentralized Approach to Multi-language

Semantics and Verification
MICHAEL SAMMLER,MPI-SWS, Germany

SIMON SPIES,MPI-SWS, Germany
YOUNGJU SONG,MPI-SWS, Germany
EMANUELE D’OSUALDO,MPI-SWS, Germany

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

DEEPAK GARG,MPI-SWS, Germany
DEREK DREYER,MPI-SWS, Germany
Prior work onmulti-language program verification has achieved impressive results, including the compositional

verification of complex compilers. But the existing approaches to this problem impose a variety of restrictions

on the overall structure of multi-language programs (e.g., fixing the source language, fixing the set of involved

languages, fixing the memory model, or fixing the semantics of interoperation). In this paper, we explore the

problem of how to avoid such global restrictions.

Concretely, we present DimSum: a new, decentralized approach to multi-language semantics and verifica-

tion, which we have implemented in the Coq proof assistant. Decentralization means that we can define and

reason about languages independently from each other (as independent modules communicating via events),

but also combine and translate between them when necessary (via a library of combinators).

We apply DimSum to a high-level imperative language Rec (with an abstract memory model and function

calls), a low-level assembly language Asm (with a concrete memory model, arbitrary jumps, and syscalls),

and a mathematical specification language Spec. We evaluate DimSum on two case studies: an Asm library

extending Rec with support for pointer comparison, and a coroutine library for Rec written in Asm. In both

cases, we show how DimSum allows the Asm libraries to be abstracted to Rec-level specifications, despite the

behavior of the Asm libraries not being syntactically expressible in Rec itself. We also verify an optimizing

multi-pass compiler from Rec to Asm, showing that it is compatible with these Asm libraries.

CCS Concepts: • Theory of computation→ Logic and verification; Operational semantics.

Additional Key Words and Phrases: multi-language semantics, verification, compilers, non-determinism,

separation logic, Iris, CoqACM Reference Format:Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, andDerek

Dreyer. 2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM

Program. Lang. 7, POPL, Article 27 (January 2023), 39 pages. https://doi.org/10.1145/3571220

Authors’ addresses: Michael Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org; Simon

Spies, MPI-SWS, Saarland Informatics Campus, Germany, spies@mpi-sws.org; Youngju Song,MPI-SWS, Saarland Informatics

Campus, Germany, youngju@mpi-sws.org; Emanuele D’Osualdo, MPI-SWS, Saarland Informatics Campus, Germany,

dosualdo@mpi-sws.org; Robbert Krebbers, Radboud University Nijmegen, The Netherlands, mail@robbertkrebbers.nl;

Deepak Garg, MPI-SWS, Saarland Informatics Campus, Germany, dg@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland

Informatics Campus, Germany, dreyer@mpi-sws.org.Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART27https://doi.org/10.1145/3571220

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 27. Publication date: January 2023.

FunTAL: Reasonably Mixing a Functional Language

with Assembly∗

Daniel Patterson

Northeastern University, USA

dbp@cc
s.neu.ed

u

Jamie Perconti

Northeastern University, USA

jamieperco
nti@gm

ail.com

Christos Dimoulas

Harvard University, USA

chrdimo@seas.
harvard

.edu

Amal Ahmed

Northeastern University, USA

amal@ccs.
neu.edu

Abstract

We present FunTAL, the first multi-language system to

formalize safe interoperability between a high-level func-

tional language and low-level assembly code while sup-

porting compositional reasoning about the mix. A central

challenge in developing such a multi-language is bridging

the gap between assembly, which is staged into jumps to

continuations, and high-level code, where subterms return a

result. We present a compositional stack-based typed assem-

bly language that supports components, comprised of one

or more basic blocks, that may be embedded in high-level

contexts. We also present a logical relation for FunTAL that

supports reasoning about equivalence of high-level com-

ponents and their assembly replacements, mixed-language

programs with callbacks between languages, and assembly

components comprised of different numbers of basic blocks.

CCS Concepts •Theory of computation → Semantics

and reasoning; •Software and its engineering → For-

mal language definitions

Keywords multi-language semantics, typed assembly lan-

guage, inline assembly, contextual equivalence, logical rela-

tions

∗ We use blue sans-serif to typeset our functional language F and red

roman to typeset our typed assembly language T. This paper will be much

easier to follow if read/printed in color.

1. Introduction

Developers frequently integrate code written in lower-level

languages into their high-level-language programs. For in-

stance, OCaml and Haskell developers may leverage the FFI

to make use of libraries implemented in C, while Rust devel-

opers may include inline assembly directly. In each of these

cases, developers resort to the lower-level language so they

can use features unavailable in the high-level language to

gain access to hardware or fine-tune performance.

However, the benefits of mixed-language programs come

at a price. To reason about the behavior of a high-level

component, developers need to think not only about the se-

mantics of the high-level language, but also about the way

their high-level code was compiled and all interactions with

low-level code. Since low-level code usually comes without

safety guarantees, invalid instructions could crash the pro-

gram. More insidiously, low-level code can potentially alter

control flow, mutate values that should be inaccessible, or in-

troduce security vulnerabilities that would not be possible in

the high-level language. Unfortunately, there are no mixed-

language systems that enable non-expert programmers to

reason about interactions with lower-level code—i.e., sys-

tems that guarantee safe interoperability and provide rules

for compositional reasoning in a mixed-language setting.

Even if developers don’t directly write inline assembly,

mixed-language programs are a reality that compiler writ-

ers and compiler-verification efforts must contend with. For

instance, mixed programs show up in modern just-in-time

(JIT) compilers, where the high-level language is initially

interpreted until the runtime can identify portions to stati-

cally compile, at which point those portions of the code are

replaced with equivalent assembly. These assembly compo-

nents will include hooks to move back into the interpreted

runtime, corresponding closely to the semantics of a mixed-

language program. Verifying correctness of such JITs re-

quires proving that the high-level fragment and its compiled
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain

ACM. 978-1-4503-4988-8/17/06...$15.00

http://dx.doi.org/10.1145/3062341.3062347

495

Verifying an Open Compiler
Using Multi-language SemanticsJames T. Perconti and Amal AhmedNortheastern University

Abstract. Existing verified compilers are proved correct under a closed-world as-

sumption, i.e., that the compiler will only be used to compile whole programs. We

present a new methodology for verifying correct compilation of program compo-

nents, while formally allowing linking with target code of arbitrary provenance. To

demonstrate our methodology, we present a two-pass type-preserving open com-

piler and prove that compilation preserves semantics. The central novelty of our

approach is that we define a combined language that embeds the source, interme-

diate, and target languages and formalizes a semantics of interoperability between

them, using boundaries in the style of Matthews and Findler. Compiler correctness

is stated as contextual equivalence in the combined language.

Note to reader: We use blue, red, and purple to typeset terms in various lan-

guages. This paper will be difficult to follow unless read/printed in color.

1 Introduction
There has been remarkable progress on formally verified compilers over the last few

years, with researchers proving the correctness of increasingly sophisticated compilers

for increasingly realistic languages. The most well known instance of this is the Comp-

Cert compiler [1,2] which uses the Coq proof assistant to both implement and verify

a multi-pass optimizing compiler from C to PowerPC, ARM, and x86 assembly, prov-

ing that the compiler preserves semantics of source programs. Several other compiler-

verification efforts have successfully followed CompCert’s lead and basic methodology,

for instance, focusing on multithreaded Java [3], just-in-time compilation [4], and C

with relaxed memory concurrency [5].
Unfortunately, these projects prove compiler correctness under a closed-world

assumption, that is, assuming that the verified compiler will always compile whole

programs. Despite the immense effort put into verification, the compiler correctness

theorem provides no guarantees about correct compilation of components. This whole-

program assumption is completely unrealistic since most software systems today are

comprised of many components written in different languages compiled to a common

target, as well as runtime-library routines that may be handwritten in the target lan-

guage. We need compiler correctness theorems applicable to the way we actually use

these compilers.Formally verifying that components are compiled correctly—often referred to as

compositional compiler correctness—is a challenging problem. A key difficulty is that,

in the setting of compiling components, it is not clear how to even state the compiler cor-

rectness theorem. CompCert’s compiler correctness theorem is easy to state thanks to

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 128–148, 2014.

c© Springer-Verlag Berlin Heidelberg 2014

Operational Semantics for Multi-Language Programs

Jacob Matthews Robert Bruce Findler

University of Chicago

{jacobm, robby}@cs.uchicago.e
du

Abstract

Inter-language interoperability is big business, as the success of Mi-

crosoft’s .NET and COM and Sun’s JVM show. Programming lan-

guage designers are designing programming languages that reflect

that fact — SML#, Mondrian, and Scala, to name just a few ex-

amples, all treat interoperability with other languages as a central

design feature. Still, current multi-language research tends not to

focus on the semantics of interoperation features, but only on how

to implement them efficiently. In this paper, we take first steps to-

ward higher-level models of interoperating systems. Our technique

abstracts away the low-level details of interoperability like garbage

collection and representation coherence, and lets us focus on se-

mantic properties like type-safety and observable equivalence.

Beyond giving simple expressive models that are natural com-

positions of single-language models, our studies have uncovered

several interesting facts about interoperability. For example, higher-

order contracts naturally emerge as the glue to ensure that inter-

operating languages respect each other’s type systems. While we

present our results in an abstract setting, they shed light on real

multi-language systems and tools such as the JNI, SWIG, and

Haskell’s stable pointers.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory—Semantics

General Terms Languages, theory

Keywords Interoperability, multi-language systems, operational

semantics

1. Introduction

A modern large-scale software system is likely written in a vari-

ety of languages: its core might be written in Java, while it has

specialized system interaction routines written in C and a web-

based user interface written in PHP. And even academic languages

have caught multi-language programming fever, perhaps due to

temptingly large numbers of pre-existing libraries written in other

languages. This has prompted language implementors to target

COM [18,41], Java Virtual Machine bytecode [7,27,34], and most

recently Microsoft’s Common Language Runtime [8, 32, 36]. Fur-

thermore, where foreign function interfaces have historically been

used in practice to allow high-level safe languages to call libraries

written in low-level unsafe languages like C (as was the motivation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.

Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

for the popular wrapper generator SWIG [5]), these new foreign

function interfaces are built to allow high-level, safe languages to

interoperate with other high-level, safe languages, such as Python

with Scheme [33] and Lua with OCaml [39].

Since these embeddings are driven by practical concerns, the

research that accompanies them rightly focuses on the bits and

bytes of interoperability — how to represent data in memory, how

to call a foreign function efficiently, and so on. But an important

theoretical problem arises, independent of these implementation-

level concerns: how can we reason formally about multi-language

programs? This is a particularly important question for systems

that involve typed languages, because we have to show that the

embeddings respect their constituents’ type systems.

In this paper we present a simple method for giving operational

semantics to multi-language systems. Our models are rich enough

to support a wide variety of multi-language embedding strategies,

and powerful enough that we have been able to use them for

type soundness and contextual equivalence proofs. Our technique

is based on simple constructs we call boundaries, cross-language

casts that regulate both control flow and value conversion between

languages. We introduce boundaries through series of operational

semantics in which we combine a simple ML-like language with a

simple Scheme-like language.

In section 2, we introduce those two constituent languages for-

mally and connect them using a primitive embedding where values

in one language are opaque to the other. In section 3, we enrich

that embedding so that boundaries use type information to convert

one language’s values into their counterparts in the other, and we

show that this embedding naturally leads to higher-order contracts.

Section 4 shows a surprising relationship between the expressive

power of these two embeddings, and section 5 shows how the sys-

tem scales beyond purely type-directed conversion.

2. The lump embedding

To begin, we pick two languages, give them formal models, and

then tie those formal models together. In the interest of focusing

on interoperation rather than the special features of particular lan-

guages, we have chosen two simple calculi: an extended model

of the untyped call-by-value lambda calculus, which we use as a

stand-in for Scheme, and an extended model of the simply-typed

lambda calculus, which we use as a stand-in for ML (though it more

closely resembles Plotkin’s PCF without fixpoint operators [37]).

Figure 1 presents these languages in an abstract manner that we in-

stantiate multiple ways to model different forms of interoperability.

One goal of this section is to explain that figure’s peculiarities, but

for now notice that aside from unusual subscripts and font choices,

the two language models look pretty much as they would in a nor-

mal Felleisen-and-Hieb-style presentation [15].

To make the preparation more concrete, as we explain our pre-

sentation of the core models we also simultaneously develop our

first interoperation model, which we call the lump embedding.

In the lump embedding, ML values can appear in Scheme and

3

CompCertO: Compiling Certified Open C
ComponentsJérémie KoenigYale UniversityNew Haven, CT, USAjeremie.koenig@yale.edu Zhong ShaoYale UniversityNew Haven, CT, USAzhong.shao@yale.edu

Abstract
Since the introduction of CompCert, researchers have been

refining its language semantics and correctness theorem, and

used them as components in software verification efforts.

Meanwhile, artifacts ranging from CPU designs to network

protocols have been successfully verified, and there is in-

terest in making them interoperable to tackle end-to-end

verification at an even larger scale.
Recent work shows that a synthesis of game semantics,

refinement-based methods, and abstraction layers has the po-

tential to serve as a common theory of certified components.

Integrating certified compilers to such a theory is a critical

goal. However, none of the existing variants of CompCert

meets the requirements we have identified for this task.

CompCertO extends the correctness theorem of CompCert

to characterize compiled program components directly in

terms of their interaction with each other. Through a careful

and compositional treatment of calling conventions, this is

achieved with minimal effort.CCS Concepts: · Software and its engineering → Soft-

ware verification;Compilers; ·Theory of computation

→ Program verification.Keywords: Compositional Compiler Correctness, Game Se-

mantics, Simulation Convention, Language Interface

ACM Reference Format:Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling

Certified Open C Components. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design

and Implementation (PLDI ’21), June 20ś25, 2021, Virtual, Canada.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3453483.

3454097

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454097

1 IntroductionOver the past decade, researchers have been able to formally

verify various key components of computer systems, includ-

ing compilers [15, 16, 25], operating system kernels [6, 7, 11],

file systems [4] and processor designs [3, 5]. Building on

these successes, the research community is attempting to

construct large-scale, heterogeneous certified systems by

using formal specifications as interfaces between the correct-

ness proofs of various components [2]. The ongoing design of

suitable semantic frameworks is an important step towards

this goal. However, incorporating certified compilers into

frameworks of this kind presents a number of difficulties.
1.1 Compositional Compiler Correctness

Compiler correctness is often formulated as a semantics

preservation property, asserting that the semantics of the

compiled program C(𝑝) are related in some particular way

to the semantics of the source program 𝑝:J𝑝KS ∼ JC(𝑝)KT .
(1)

For whole-program compilers, semantics preservation is

straightforward enough. In CompCert, the semantics of the

source and target programs are given as labeled transition

systems, and the relation ∼ is a simulation property.

However, practical applications involve program compo-

nents which we want to compile and verify separately from

each other. In principle, the use of a compositional seman-

tics enables the formulation of (1) at the level of individual

components. Unfortunately, traditional approaches to com-

positional semantics fare poorly in the presence of advanced

language features, or of the kind of abstraction involved in

the compilation process. For CompCert, early attempts along

these lines have proven challenging [21, 23].

As a result, commonwisdom holds semantics preservation

to be a lost cause for compositional compiler correctness [20].

Instead, research has focused on compositional reasoning

methods based on contextual refinement, side-stepping the

need for compositional semantics preservation [10, 22].
1.2 Decomposing Heterogeneous Systems

Unfortunately, these methods share an intrinsic limitation:

they presuppose the existence of a completed system to be

proven correct, and compositionality only operates within its1095

6

A Multi-Language Program in OCaml and C

6

A Multi-Language Program in OCaml and C

C business logic
void hash_ptr(int * x) {

// Implemented in OpenSSL
// tedious to port to OCaml

}

6

A Multi-Language Program in OCaml and C

OCaml business logic
let main () =

let r = ref 42 in
hash_ref r; (* written in C *)
print_int !r

C business logic
void hash_ptr(int * x) {

// Implemented in OpenSSL
// tedious to port to OCaml

}

6

A Multi-Language Program in OCaml and C

OCaml business logic
let main () =

let r = ref 42 in
hash_ref r; (* written in C *)
print_int !r

C business logic
void hash_ptr(int * x) {

// Implemented in OpenSSL
// tedious to port to OCaml

}

C glue code
value caml_hash_ref(value r) {

int x = Int_val(Field(r, 0));
hash_ptr(&x);
Store_field(r, 0, Val_int(x));
return Val_unit;

}

6

A Multi-Language Program in OCaml and C

OCaml business logic
let main () =

let r = ref 42 in
hash_ref r; (* written in C *)
print_int !r

OCaml glue code
external hash_ref

: int ref -> unit
= "caml_hash_ref"

C business logic
void hash_ptr(int * x) {

// Implemented in OpenSSL
// tedious to port to OCaml

}

C glue code
value caml_hash_ref(value r) {

int x = Int_val(Field(r, 0));
hash_ptr(&x);
Store_field(r, 0, Val_int(x));
return Val_unit;

}

7

A Schematic Multi-Language Program

Most multi-language programs look like this:

OCaml business logic C business logic
oblivious of C oblivious of OCaml

glue code
where the languages actually interact

We Need to Reason Language-Locally!

8

Our Contribution: Melocoton

λML+C Semantics
Glue Code Semantics

λML+C Program Logic
Glue Code Verification

Common Approach: program logic on top of semantics, but

Language Interaction: new semantics and logic for glue code

Language Locality: embed existing semantics and logics

*simplified/idealized versions of OCaml and C

8

Our Contribution: Melocoton

C* SemanticsOCaml* Semantics
λML+C Semantics

Glue Code Semantics

C* Program LogicOCaml* Program Logic
λML+C Program Logic
Glue Code Verification

Common Approach: program logic on top of semantics, but

Language Interaction: new semantics and logic for glue code
Language Locality: embed existing semantics and logics

*simplified/idealized versions of OCaml and C

8

Our Contribution: Melocoton

C* SemanticsOCaml* Semantics
λML+C Semantics

Glue Code Semantics

C* Program LogicOCaml* Program Logic
λML+C Program Logic
Glue Code Verification

Common Approach: program logic on top of semantics, but

Language Interaction: new semantics and logic for glue code
Language Locality: embed existing semantics and logics

*simplified/idealized versions of OCaml and C

9

Language Interaction: Different Views of the Same Data

OCaml glue code
external hash_ref

: int ref -> unit
= "caml_hash_ref"

C glue code
value caml_hash_ref(value r) {

int x = Int_val(Field(r, 0));
hash_ptr(&x);
Store_field(r, 0, Val_int(x));
return Val_unit;

}

How is OCaml data accessed from C glue code?

9

Language Interaction: Different Views of the Same Data

OCaml glue code
external hash_ref

: int ref -> unit
= "caml_hash_ref"

C glue code
value caml_hash_ref(value r) {

int x = Int_val(Field(r, 0));
hash_ptr(&x);
Store_field(r, 0, Val_int(x));
return Val_unit;

}

How is OCaml data accessed from C glue code?

High-level OCaml values are accessed..
..through a low-level block representation.

10

Language Interaction: Semantics

High-level OCaml value ∼ML Low-level block representation

integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics

10

Language Interaction: Semantics

true ∼ML 1

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)

arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks

pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)

lists ∼ML block-based linked lists

λML+C Semantics

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics
ζ : BlockHeapσ : HeapML

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics
ζ : BlockHeapσ : HeapML

switch at the language barrier

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics
σ : HeapML ζ : BlockHeap

switch at the language barrier

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics
ζ : BlockHeapσ : HeapML

switch at the language barrier

10

Language Interaction: Semantics

true ∼ML 1

ℓ ∼ML γ

High-level OCaml value ∼ML Low-level block representation
integers ∼ML integers
booleans ∼ML integers (0 or 1)
arrays, refs ∼ML blocks
pairs ∼ML blocks (of size 2)
lists ∼ML block-based linked lists

λML+C Semantics
σ : HeapML ζ : BlockHeap

switch at the language barrier

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗ℓ 7→ML V⃗

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
σ : HeapML ζ : BlockHeap

λML+C Program Logic
ℓ 7→ML V⃗

all the
γ 7→blk v⃗

all the

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
σ : HeapML ζ : BlockHeap

λML+C Program Logic
ℓ 7→ML V⃗

all the
γ 7→blk v⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
σ : HeapML ζ : BlockHeap

λML+C Program Logic
ℓ 7→ML V⃗

all the
γ 7→blk v⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

Frame
{P} e {Q}

{R ∗ P} e {Q ∗ R}

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
σ : HeapML ζ : BlockHeap

λML+C Program Logic
ℓ 7→ML V⃗

all the
γ 7→blk v⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

Frame
{P} call into C {Q}

{R ∗ P} call into C {Q ∗ R}

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
σ : HeapML ζ : BlockHeap

λML+C Program Logic
ℓ 7→ML V⃗

all the
γ 7→blk v⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

Frame
{P} call into C {Q}

{ℓ 7→ML V⃗ ∗ P} call into C {Q ∗ ℓ 7→ML V⃗}

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

Frame
{P} call into C {Q}

{ℓ 7→ML V⃗ ∗ P} call into C {Q ∗ ℓ 7→ML V⃗}

11

Language Interaction: Program Logic, Take 1

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

ExtCall
{ all } C function body { all }

{ all } call into C { all }

Frame
{P} call into C {Q}

{ℓ 7→ML V⃗ ∗ P} call into C {Q ∗ ℓ 7→ML V⃗}E

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗ ℓ1 7→ML V⃗1

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗ γ1 7→blk v⃗1

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗ γ1 7→blk v⃗1

γ2 7→blk v⃗2

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗
γ2 7→blk v⃗2

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

12

Language Interaction: More Gradual Rules

OCaml points-tos remain valid when switching to C!

ℓ 7→ML V⃗

View Reconciliation Rules for Converting On-Demand:
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

σghost : HeapML

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

σghost : HeapML

13

Language Interaction: View Reconciliation

View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

λML+C Semantics
ζ : BlockHeapσ : HeapML

λML+C Program Logic
γ 7→blk v⃗

all the
ℓ 7→ML V⃗

all the

σghost : HeapML

14

More in the paper . . .

Language-local reasoning for external calls.
Additional OCaml FFI features: garbage collection,
registering roots, custom blocks, callbacks, etc.
Case studies utilising all of these features.
Step-indexed logical relation to prove OCaml type safety
of external C functions.

Transfinite

15

Our Contribution: Melocoton

Language Locality: Embed Existing Languages

C SemanticsOCaml Semantics
λML+C Semantics

Glue Code Semantics

C Program LogicOCaml Program Logic
λML+C Program Logic
Glue Code Verification

Language Interaction: View Reconciliation Rules
ℓ 7→ML V⃗ ≡−∗ ∃γv⃗. γ 7→blk v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗

V⃗ ∼ML v⃗ ∗ γ 7→blk v⃗ ≡−∗ ∃ℓ . ℓ 7→ML V⃗ ∗ ℓ ∼ML γ

https://melocoton-project.github.io

https://melocoton-project.github.io

